Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Chinese Journal of Biotechnology ; (12): 2284-2312, 2023.
Article in Chinese | WPRIM | ID: wpr-981203

ABSTRACT

Non-conventional yeasts such as Yarrowia lipolytica, Pichia pastoris, Kluyveromyces marxianus, Rhodosporidium toruloides and Hansenula polymorpha have proven to be efficient cell factories in producing a variety of natural products due to their wide substrate utilization spectrum, strong tolerance to environmental stresses and other merits. With the development of synthetic biology and gene editing technology, metabolic engineering tools and strategies for non-conventional yeasts are expanding. This review introduces the physiological characteristics, tool development and current application of several representative non-conventional yeasts, and summarizes the metabolic engineering strategies commonly used in the improvement of natural products biosynthesis. We also discuss the strengths and weaknesses of non-conventional yeasts as natural products cell factories at current stage, and prospects future research and development trends.


Subject(s)
Yeasts/genetics , Yarrowia/metabolism , Gene Editing , Metabolic Engineering
2.
Braz. j. microbiol ; 49(4): 808-815, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974288

ABSTRACT

ABSTRACT Chicha, a type of beer made mainly with maize or cassava, is a traditional fermented beverage of the Andean region. There have only been a few studies on yeasts associated with chicha fermentation, and the species diversity occurring during the production of this beverage is not known. The objective of this study was to determine the biodiversity of yeasts in chicha, and to characterize the Saccharomyces cerevisiae populations associated with the production of chicha de jora, seven-grain chicha, chicha de yuca, and chicha de morocho in Ecuador. The molecular diversity of S. cerevisiae populations was determined by restriction polymorphism mitochondrial profiles. The beverages were characterized based on their physicochemical parameters. Twenty-six species were identified, and the most prevalent species were S. cerevisiae and Torulaspora delbrueckii. Other yeast species were isolated at low frequencies. Among 121 isolates of S. cerevisiae, 68 different mtDNA molecular profiles were identified. These results showed that chichas are fermented by a high number of different strains of S. cerevisiae. Some other species provided a minor contribution to the fermentation process. The chicha presented generally similar physicochemical parameters to those observed for other traditional fermented beverages, and can be considered as an acid fermented beverage.


Subject(s)
Saccharomyces cerevisiae/isolation & purification , Beer/microbiology , Yeasts/isolation & purification , Yeasts/metabolism , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Beer/analysis , Yeasts/classification , Yeasts/genetics , Manihot/metabolism , Manihot/microbiology , Zea mays/metabolism , Zea mays/microbiology , Biodiversity , Ecuador , Fermentation
3.
Braz. j. microbiol ; 49(4): 823-831, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974299

ABSTRACT

ABSTRACT Sour cassava starch (Polvilho azedo) is obtained from a spontaneous fermentation conducted by microorganisms from raw materials and fermentation tanks. This product is traditionally used in the baking industry for the manufacture of biscuits and Brazilian cheese breads. However, the end of fermentation is evaluated empirically, and the process occurs without standardization, which results in products of inconsistent quality. Predominant microbiota from a cassava flour manufacturer was isolated in order to select starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Lactic acid bacteria and yeasts were isolated, enumerated and grouped by Restriction Fragment Length Polymorphism, and PCR fingerprinting, respectively. One isolate of each molecular profile was identified by sequencing of the rRNA gene. LAB were prevalent throughout the entire process. Lactobacillus brevis (21.5%), which produced the highest values of acidity, and Lactobacillus plantarum (13.9%) were among the most frequent species. Pichia scutulata (52.2%) was the prevalent yeast and showed amylolytic activity. The aforementioned species were tested as single and mixed starter cultures in a pilot-scale fermentation process for 28 days. L. plantarum exhibited better performance as a starter culture, which suggests its potential for the production of sour cassava starch.


Subject(s)
Starch/metabolism , Yeasts/metabolism , Manihot/chemistry , Lactobacillus/metabolism , Starch/chemistry , Yeasts/genetics , Brazil , Manihot/metabolism , Fermentation , Microbiota , Food Microbiology , Lactobacillus/isolation & purification , Lactobacillus/genetics
4.
Braz. j. microbiol ; 49(1): 162-168, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889200

ABSTRACT

ABSTRACT For the implementation of cellulosic ethanol technology, the maximum use of lignocellulosic materials is important to increase efficiency and to reduce costs. In this context, appropriate use of the pentose released by hemicellulose hydrolysis could improve de economic viability of this process. Since the Saccharomyces cerevisiae is unable to ferment the pentose, the search for pentose-fermenting microorganisms could be an alternative. In this work, the isolation of yeast strains from decaying vegetal materials, flowers, fruits and insects and their application for assimilation and alcoholic fermentation of xylose were carried out. From a total of 30 isolated strains, 12 were able to assimilate 30 g L-1 of xylose in 120 h. The strain Candida tropicalis S4 produced 6 g L-1 of ethanol from 56 g L-1 of xylose, while the strain C. tropicalis E2 produced 22 g L-1 of xylitol. The strains Candida oleophila G10.1 and Metschnikowia koreensis G18 consumed significant amount of xylose in aerobic cultivation releasing non-identified metabolites. The different materials in environment were source for pentose-assimilating yeast with variable metabolic profile.


Subject(s)
Pentoses/metabolism , Xylose/metabolism , Yeasts/metabolism , Vegetables/microbiology , Xylitol/metabolism , Yeasts/isolation & purification , Yeasts/classification , Yeasts/genetics , Ethanol/metabolism , Fermentation
5.
Braz. j. microbiol ; 47(4): 993-999, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828184

ABSTRACT

Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV) strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3). The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.


Subject(s)
Animals , Cattle , Yeasts/genetics , Genome, Viral , DNA, Complementary , Diarrhea Viruses, Bovine Viral/genetics , Homologous Recombination , Virus Replication , Yeasts/metabolism , Cell Line , Open Reading Frames , Sequence Analysis, DNA , Diarrhea Viruses, Bovine Viral/physiology , Diarrhea Viruses, Bovine Viral/ultrastructure
6.
Braz. j. microbiol ; 47(4): 889-895, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828185

ABSTRACT

Abstract Solid-state fermentation can be used to produce feeds for ruminants, which can provide an enriched population of yeasts to improve ruminal fermentation. Fermentation of apple bagasse was performed to obtain a yeast-rich product, with the objective of isolating, identifying, and characterizing yeast strains and testing their capability to enhance in vitro ruminal fermentation of fibrous feeds. Yeasts were isolated from apple bagasse fermented under in vitro conditions, using rumen liquor obtained from cannulated cows and alfalfa as a fibrous substrate. A total of 16 new yeast strains were isolated and identified by biochemical and molecular methods. The strains were designated Levazot, followed by the isolate number. Their fermentative capacity was assessed using an in vitro gas production method. Strain Levazot 15 (Candida norvegensis) showed the greatest increase in gas production (p < 0.05) compared with the yeast-free control and positively affected in vitro ruminal fermentation parameters of alfalfa and oat straw. Based on these results, it was concluded that the Levazot 15 yeast strain could be potentially used as an additive for ruminants consuming high-fiber diets. However, further studies of effects of these additives on rumen digestion, metabolism, and productive performance of ruminants are required.


Subject(s)
Animals , Yeasts/isolation & purification , Yeasts/classification , Cellulose , Malus , Food Additives , Animal Feed/microbiology , Phylogeny , Yeasts/genetics , Yeasts/metabolism , Ruminants , Fermentation
7.
Bol. micol. (Valparaiso En linea) ; 31(2): 9-22, dic. 2016. tab, ilus
Article in Spanish | LILACS | ID: biblio-868812

ABSTRACT

Las levaduras juegan un importante rol en la naturaleza siendo el mayor reservorio de ellas el suelo. Mediante el método de las diluciones seriadas y posterior siembra en agar Sabouraud se aislaron en cultivo puro 77 cepas de levaduras desde un mismo suelo trumao del sur de Chile, usado como pradera permanente (30 cepas), pradera en rotación (30 cepas) y como control bosque nativo (17 cepas), estas cepas se identificaron molecularmente por PCR-RFLP en conjunto con secuenciación del rDNA de ITS-5.8S, además se realizo una caracterización fisiológica (asimilación fuente de carbono, de nitrógeno y fermentación de azucares) a cada cepa. Mediante las técnicas moleculares las 77 cepas se reunieron en 10 grupos, de estos solamente tres grupos se pudieron identificar a nivel de especie y uno hasta género: Devariomyces hansenii. Pichia fermentan. Kazachstania exigua., Candida sp.


Yeasts plays an important role in nature, It is the largest reservoir of soil them. By the method of serial dilutions and subsequent planting in Sabouraud agar were isolated in pure culture 77 strains of yeast from the same volcanic ash soil of southern Chile, used as permanent pasture (30 strains), rotation pasture (30 strains) and native forest as a control (17 strains), these strains were identified molecularly by PCR-RFLP in conjunction with rDNA sequencing ITS-5.8S, physiological characterization addition was performed to each strain (carbon and nitrogen source assimilation and fermentation of sugars). Using molecular techniques met the 77 strains in 10 groups; only three groups could be identified to species level and one to gender: Devariomyces hansenii; Pichia fermented; Kazachstania exigua; Candida sp.


Subject(s)
Humans , Genetic Markers , Yeasts/isolation & purification , Yeasts/physiology , Yeasts/genetics , Yeasts/metabolism , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Soil Microbiology , Chile , Volcanic Eruptions/adverse effects , Porosity , Soil Characteristics
8.
Electron. j. biotechnol ; 19(3): 82-92, May 2016. ilus
Article in English | LILACS | ID: lil-787013

ABSTRACT

Lignocellulosic biomass is the most abundant renewable source of energy that has been widely explored as second-generation biofuel feedstock. Despite more than four decades of research, the process of ethanol production from lignocellulosic (LC) biomass remains economically unfeasible. This is due to the high cost of enzymes, end-product inhibition of enzymes, and the need for cost-intensive inputs associated with a separate hydrolysis and fermentation (SHF) process. Thermotolerant yeast strains that can undergo fermentation at temperatures above 40°C are suitable alternatives for developing the simultaneous saccharification and fermentation (SSF) process to overcome the limitations of SHF. This review describes the various approaches to screen and develop thermotolerant yeasts via genetic and metabolic engineering. The advantages and limitations of SSF at high temperatures are also discussed. A critical insight into the effect of high temperatures on yeast morphology and physiology is also included. This can improve our understanding of the development of thermotolerant yeast amenable to the SSF process to make LC ethanol production commercially viable.


Subject(s)
Yeasts/genetics , Biomass , Biofuels , Lignin/chemistry , DNA Shuffling , Ethanol , Enzymes , Fermentation , Hot Temperature , Hydrolysis
9.
Braz. j. microbiol ; 47(1): 18-24, Jan.-Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-775112

ABSTRACT

Abstract Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater) was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11) that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275) mg L−1 was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.


Subject(s)
Industrial Waste , Phenol/metabolism , Wastewater/microbiology , Water Pollutants, Chemical/metabolism , Yeasts/classification , Yeasts/metabolism , Biotransformation , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Iran , Molecular Sequence Data , Phylogeny , /genetics , Sequence Analysis, DNA , Soil Microbiology , Yeasts/genetics , Yeasts/isolation & purification
10.
Electron. j. biotechnol ; 17(4): 150-155, July 2014. tab
Article in English | LILACS | ID: lil-719105

ABSTRACT

Background Saccharomyces cerevisiae is the main microorganism responsible for alcoholic fermentation. In this process, the consumption of nitrogen is of great importance since it is found in limiting quantities and its deficiency produces sluggish and/or stuck fermentations generating large economic losses in the wine-making industry. In a previous work we compared the transcriptional profiles between genetically related strains with differences in nitrogen consumption, detecting genes with differential expression that could be associated to the differences in the levels of nitrogen consumed. One of the genes identified was ICY1. With the aim of confirming this observation, in the present work we evaluated the consumption of ammonium during the fermentation of strains that have deleted or overexpressed this gene. Results Our results confirm the effect of ICY1 on nitrogen uptake by evaluating its expression in wine yeasts during the first stages of fermentation under low (MS60) and normal (MS300) assimilable nitrogen. Our results show that the mRNA levels of ICY1 diminish when the amount of assimilable nitrogen is low. Furthermore, we constructed strains derived from the industrial strain EC1118 as a null mutant in this gene as well as one that overexpressed it. Conclusions Our results suggest that the expression of ICY1 is regulated by the amount of nitrogen available in the must and it is involved in the consumption of ammonium, given the increase in the consumption of this nitrogen source observed in the null mutant strain.


Subject(s)
Saccharomyces cerevisiae/genetics , Wine/microbiology , Yeasts/genetics , Fermentation , Saccharomyces cerevisiae/metabolism , Yeasts/metabolism , Gene Expression , Cloning, Molecular , Gene Deletion , Reverse Transcriptase Polymerase Chain Reaction/methods , Nitrogen
11.
Braz. j. microbiol ; 45(2): 411-416, Apr.-June 2014. ilus, graf
Article in English | LILACS | ID: lil-723096

ABSTRACT

The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 x 10(5) cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.


Subject(s)
Biodiversity , Vitis/microbiology , Yeasts/classification , Yeasts/isolation & purification , Brazil , Colony Count, Microbial , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Mycological Typing Techniques , Polymorphism, Restriction Fragment Length , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Yeasts/genetics
12.
Braz. j. microbiol ; 45(1): 135-142, 2014. ilus, tab
Article in English | LILACS | ID: lil-709467

ABSTRACT

In Colombia, knowledge of the yeast and yeast-like fungi community is limited because most studies have focused on species with clinical importance. Sediments and water represent important habitats for the study of yeast diversity, especially for yeast species with industrial, biotechnological, and bioremediation potential. The main purpose of this study was to identify and compare the diversity of yeast species associated with sediment and water samples from two artificial lakes in Universidad del Valle (Cali-Colombia). Yeast samplings were performed from fifteen sediment samples and ten water samples. Grouping of similar isolates was initially based on colony and cell morphology, which was then complemented by micro/mini satellite primed PCR banding pattern analysis by using GTG5 as single primer. A representative isolate for each group established was chosen for D1/D2 domain sequencing and identification. In general, the following yeast species were identified: Candida albicans, Candida diversa, Candida glabrata, Candida pseudolambica, Cryptococcus podzolicus, Cryptococcus rajasthanensis, Cryptococcus laurentii, Williopsis saturnus, Hanseniaspora thailandica, Hanseniaspora uvarum, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Torulaspora delbrueckii, Torulaspora pretoriensis, Tricosporon jirovecii, Trichosporon laibachii and Yarrowia lypolitica. Two possible new species were also found, belonging to the Issatchenkia sp. and Bullera sp. genera. In conclusion, the lakes at the Universidad del Valle campus have significant differences in yeast diversity and species composition between them.


Subject(s)
Biodiversity , Lakes/microbiology , Yeasts/classification , Yeasts/isolation & purification , Colombia , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Geologic Sediments/microbiology , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Water Microbiology , Yeasts/genetics
13.
Braz. j. microbiol ; 44(1): 113-118, 2013. ilus, tab
Article in English | LILACS | ID: lil-676894

ABSTRACT

Biochemical and molecular analysis was used for identification of different kefir yeasts species from Brazil, Canada and the United States of America. The sugar/ethanol-resistant activity of the yeasts was evaluated. Saccharomyces cerevisiae and Kluyveromyces marxianus had the highest growth rates, suggesting biotechnological applications possible for these strains.


Subject(s)
Base Sequence , Cultured Milk Products , Ethanol/analysis , Genome, Bacterial , In Vitro Techniques , Yeasts/genetics , Yeasts/isolation & purification , Phenotype , Polymerase Chain Reaction/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Electrophoresis , Genetic Variation , Genotype , Methods
14.
Braz. j. microbiol ; 43(2): 627-634, Apr.-June 2012. tab
Article in English | LILACS | ID: lil-644479

ABSTRACT

Microbial lipids, which are also known as single cell oils (SCO), are produced by oleaginous microorganisms including oleaginous bacteria, yeast, fungus and algae through converting carbohydrates into lipids under certain conditions. Due to its unique environment having extremely low temperature and anoxia, the Tibetan Plateau is amongst the regions with numerous rare ecotypes such as arid desert, salt marsh, alpine permafrost, hot spring, and lawn. By using a rapid, convenient screening method, we identified 31 strains of oleaginous microorganisms from different habitats in the Tibetan Plateau, which include wetlands, lawn, hot spring, alpine permafrost, and saline-alkali soil. Molecular identity analysis showed that they belong to 15 different species, 7 of which are reported for the first time as lipid-producing microorganisms, that is, Cladosporium sp., Gibberella fujikuro, Ochrobactrum sp., Plectosphaerella sp., Tilletiopsis albescens, Backusella ctenidia, and Davidiella tassiana. The distribution of the oleaginous microorganisms varies with habitats. 11 strains were found in hot spring (35.5%), 10 in farmland (32.3%), 6 in lawn (19.4%), 2 in sand (6.4%), 1 in wetland (3.2%), and 1 in permafrost (3.2%). Carbon utilization analysis indicated that most of these filamentous fungi can use xylose and carboxymethyl cellulose (CMC) as carbon source, where Backusella ctenidia, Fusarium sp. and Gibberella fujikuroi have the strongest capability.


Subject(s)
Carboxymethylcellulose Sodium , Fermentation , Fungi/genetics , Fungi/isolation & purification , In Vitro Techniques , Yeasts/genetics , Yeasts/isolation & purification , Plant Oils/analysis , Polymerase Chain Reaction/methods , Xylose/analysis , Enzyme Activation , Methodology as a Subject
15.
Recife; s.n; 2012. 131 p. ilus, graf.
Thesis in Portuguese | LILACS | ID: lil-644900

ABSTRACT

A Doença de Gumboro (DG) é uma doença imunossupressora comum em aves jovens infectadas pelo Vírus da Doença de Gumboro (Infectious Bursal Disease Vírus, IBDV), sendo responsável por perdas econômicas no setor avícola. O vírus influenza apresenta-se com um alto nível de mutação, o que resulta no surgimento de vírus imunologicamente distintos capazes de causar pandemias ou epidemias. Entende-se por sistema de genética reversa viral (SGRV) a geração/recuperação de vírus por meio da transfecção celular do cDNA viral clonado ou seu RNA viral transcrito in vitro. SGRV pode ser usado na elucidação dos mecanismos de replicação do influenza e IBDV, e aplicações biotecnológicas como desenvolvimento de vacinas. Diante desse levantado, objetivou-se a construção de dois SGRVs por recombinação homóloga em levedura (RHL): um para IBDV e outro para influenza aviária (IA). Para o SGRV do IBDV, IBDV foi isolado no Brasil, teve seu genoma amplificado e clonado por RHL no vetor pJG-CMV-HDR. Os clones foram transfectados em fibroblasto de embrião de galinha (FEG) e o vírus gerado (IC-IBDVBr) mostrou estabilidade gênica e fenótipo similar ao vírus parental. A geração e crescimento do IC-IBDVBr não foram possíveis em células Vero. Para o SGRV do IA, IA foi isolado no Brasil, seu genoma foi amplificado e clonado em pDrive/pGEM-T Easy e depois subclonado por RHL no vetor pJGCh2008. Os clones em pJG-Ch2008 responsáveis pela codificação das proteínas do complexo polimerase viral (CPV) foram transfectados simultaneamente em células Human Embryonic Kidney 293T com plasmídeos contendo o gene repórter red fluorescent protein ou Gaussia luciferase, ambos flanqueados pela untransleated region do influenza. A funcionalidade do CPV do IA foi verificada pela expressão de RFP e GLuc. A recuperação do IA em FEG pelos clones em pJG-Ch2008 não foi possível. A funcionalidade do CPV mais a integridade dos clones indicam que a recuperação do IA não foi possível provavelmente devido à eficiência da transfecção celular. A construção do SGRV para IBDV, o primeiro do mundo feito por RHL e o primeiro desenvolvido no Brasil, junto com os passos iniciais para a construção do primeiro SGRV para influenza feito por RHL e a consequente construção do CPV por essa tecnologia, disponibilizam ao país ferramentas capazes de contribuir no esclarecimento do ciclo replicativo de ambos os vírus, além de criar bases para o futuro desenvolvimento de vacinas e vetores virais.


Subject(s)
Animals , Infectious bursal disease virus/genetics , Infectious bursal disease virus/isolation & purification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Cloning, Molecular , Influenza in Birds/virology , Yeasts/genetics , Recombination, Genetic , Reverse Transcriptase Polymerase Chain Reaction
16.
Biomédica (Bogotá) ; 31(4): 570-579, dic. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-635478

ABSTRACT

Introduction: Paracoccidioidomycosis is an endemic systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus that in tissues and cultures at 37°C grows as a yeast while at lower temperatures (less than 24°C) it becomes a mold; however the genes that rule these processes and their expression are poorly understood. Objective: This research focused on the kinetic expression of certain genes in P. brasiliensis throughout the dimorphic process, one that involves the transition from the mycelium to yeast forms and the germination from the yeast to mycelium form. Materials and methods: A real-time quantitative polymerase chain reaction (RT-qPCR) was optimized to measure the expression of ten genes connected with diverse cellular functions including cell synthesis and wall structure, oxidative stress response, heat shock response, metabolism, proteins’ processing, solute transport across the cell membrane and signal transduction pathways at different time points during the mycelia to yeast transition, as well as in the yeast to mycelia germination processes. Results: Genes involved in cell synthesis and wall structure, metabolism and signal transduction were differentially expressed and highly up-regulated during the yeast to mycelia germination process; on the other hand, genes involved in heat shock response, cell synthesis and wall structure were highly up-regulated during the mycelia to yeast transition process. The remaining genes were differentially regulated during both processes. Conclusion: In this work the up-regulation of certain genes involved in the morphological changes occurring in P. brasiliensis yeast and mycelia forms were confirmed, indicating that these biological processes play an important role during the host-pathogen interactions, as well as in the fungus adaptation to environmental conditions.


Introducción. La paracoccidioidomicosis es una micosis sistémica causada por el hongo termodimorfo Paracoccidioides brasiliensis. En tejidos y cultivos a 37°C crece como levadura, mientras que a temperaturas menores de 24°C crece como un moho. Sin embargo, se conoce poco sobre los genes que regulan estos procesos. Objetivo. Se evaluó la cinética de expresión de algunos genes en P. brasiliensis mediante el proceso de dimorfismo incluida la transición del micelio a levadura y de la germinación de levadura a micelio. Materiales y métodos. Se optimizó una PCR cuantitativa en tiempo real (RT-qPCR) para medir la expresión de diez genes relacionados con diversas funciones celulares que incluyeron: síntesis de pared, respuesta al estrés oxidativo, respuesta al choque térmico, metabolismo, procesamiento de proteínas, trasporte de solutos a través de membranas y transducción de señales, todo ello a diferentes tiempos durante la transición de micelio a levadura, así como de la germinación de levadura a micelio. Resultados. Se encontró que los genes relacionados con síntesis de pared, metabolismo y transducción de señales, se expresaban de manera diferencial y con regulación positiva durante la germinaciónlevadura a micelio, mientras que algunos genes relacionados con respuesta a choque térmico y a síntesis de pared estaban sobreexpresados en la transición de micelio a levadura. Los genes restantes se regularon de manera diferencial en ambos procesos. Conclusiones. En este trabajo se confirma la regulación positiva de algunos genes relacionados con los cambios morfológicos de las fases levadura y micelio en P. brasiliensis, procesos biológicos que juegan un papel de importancia durante la interacción huésped-parásito y durante la adaptación del hongo al ambiente, respectivamente.


Subject(s)
Gene Expression , Mycelium/genetics , Mycelium/physiology , Paracoccidioides/genetics , Paracoccidioides/physiology , Yeasts/genetics , Yeasts/physiology , Germination/genetics , Kinetics
17.
Rev. colomb. biotecnol ; 12(2): 176-186, dic. 2010. tab
Article in Spanish | LILACS | ID: lil-590783

ABSTRACT

En Colombia el conocimiento de la comunidad levaduriforme ha sido limitado, ya que los estudios se han enfocado principalmente en especies de interés clínico. Las fermentaciones espontáneas a partir de diversos sustratos representan hábitats de gran importancia para el estudio de la dinámica de las poblaciones de levaduras nativas, por esta razón, en el presente estudio se aislaron e identificaron las levaduras asociadas a las chichas de maíz, piña y arracacha, que son bebidas fermentadas de manera artesanal en Colombia. Se realizó el aislamiento de las levaduras más representativas de la chicha durante sus tres fases de fermentación: inicial, tumultuosa y final. Inicialmente, se hizo una caracterización parcial de los aislados, que incluyó pruebas fisiológicas, y medición de su capacidad para producir filamentos y esporas. Sin embargo, debido a que estas técnicas no fueron suficientes para identificar los aislados hasta el nivel taxonómico de género o de especie, se complementó el estudio de cada aislado empleando técnicas moleculares basadas en el análisis de restricción del gen rRNA 5.8S y los espaciadores transcritos internos (ITS1 e ITS2). Cuando el empleo de esta técnica no permitió obtener resultados definitivos y para confirmar las asignaciones realizadas usando PCR-RFLPs, se secuenció el dominio D1/D2 del gen 26S rRNA de los aislados más representativos. Mediante estas técnicas se lograron identificar las especies más representativas de los tres tipos de chicha: Candida tropicalis, Pichia kluyveri, Pichia guilliermondii, Hanseniapora guilliermondii, Pichia fermentans, Saccharomyces cerevisiae, Candida maltosa, Rhodotorula glutinis, Torulaspora delbrueckii, Hanseniaspora uvarum, Kazachstania exigua, Kluyveromyces marxianus, Yarrowia lypolitica, Candida parapsilosis, Debaromyces hansenii, Cryptococcus arboriformis, Saccharomyces martiniae, Dekkera anomala, Aureobasidium pullulans y Candida pseudointermedia. La caracterización preliminar de los aislados...


In Colombia, knowledge about yeast communities has been limited because most reports have focused on yeast species with clinical relevance. The spontaneous fermentation of different substrates creates important habitats for analyzing wild yeast populations; for this reason, in this study we isolated and identified yeasts associated with the “chichas” of corn, pineapple, and “arracacha,” which are traditional fermented Colombian beverages. The most representative yeasts were isolated from “chicha” during its three phases of fermentation: initial, tumultuous and final. Initially, we made a partial characterization of isolated yeasts, including macroscopic and microscopic descriptions, physiological tests, and measurement of capacity for producing spores and filaments. However, because these techniques were not sufficient for identification of isolated yeasts to the level of genus and species, the study was complemented by using molecular techniques based on restriction analysis of the ITS1-5.8S rRNA gene-ITS2. When this technique did not permit us to obtain positive results and confirm the PCR-RFLP results, we used the sequence of the D1/D2 domain of the 26S rRNA gene instead for most representative isolates. With these techniques, we identified the most representative yeast species of the three classes of “chicha”: Candida tropicalis, Pichia kluyveri, Pichia guilliermondii, Hanseniapora guilliermondii, Pichia fermentans, Saccharomyces cerevisiae, Candida maltosa, Rhodotorula glutinis, Torulaspora delbrueckii, Hanseniaspora uvarum, Kazachstania exigua, Kluyveromyces marxianus, Yarrowia lypolitica, Candida parapsilosis, Debaromyces hansenii, Cryptococcus arboriformis, Saccharomyces martiniae, Dekkera anomala, Aureobasidium pullulans and Candida pseudointermedia. The preliminary characterization of isolated yeasts, based on ethanol-tolerance and salt-tolerance tests, permitted recognition of wild yeasts for possible biotechnological uses in industry.


Subject(s)
Yeasts/isolation & purification , Yeasts/growth & development , Yeasts/genetics , Biotechnology/methods
18.
Braz. j. microbiol ; 40(1): 108-110, Jan.-Mar. 2009.
Article in English | LILACS | ID: lil-513125

ABSTRACT

Fruit and soil yeasts isolated from the Amazon, Atlantic Rainforests and an organic farm were screened for killer activity against yeasts. Killer yeasts were then tested against the phytopathogen Moniliophthora perniciosa (syn. Crinipellis perniciosa) and a Dipodascus capitatus strain and a Candida sp strain inhibited its growth.


Leveduras de frutas e de solo isoladas da Floresta Amazônica, Mata Atlântica e de uma fazenda orgânica foram selecionadas em uma triagem para atividade micocinogênica. As estirpes micocinogênicas foram posteriormente testadas frente a Moniliophthora perniciosa (syn. Crinipellis perniciosa). Uma estirpe de Dipodascus capitatus e outra de Candida sp.inibiram o crescimento deste fitopatógeno.


Subject(s)
Fruit/growth & development , Fruit/microbiology , Fungi/genetics , Fungi/isolation & purification , In Vitro Techniques , Yeasts/genetics , Yeasts/isolation & purification , Soil Microbiology , Methods , Methods , Virulence
19.
Genet. mol. res. (Online) ; 5(1): 224-232, Mar. 31, 2006. tab, graf
Article in English | LILACS | ID: lil-449130

ABSTRACT

Analysis of gene deletions is a fundamental approach for investigating gene function. We evaluated an algorithm that uses classification techniques to predict the phenotypic effects of gene deletions in yeast. We used a modified simulated annealing algorithm for feature selection and weighting. The selected features with high weights were phylogenetic conservation scores for bacteria, fungi (excluding Ascomycota), Ascomycota (excluding Saccharomyces cerevisiae), plants, and mammals, degree of paralogy, and number of protein-protein interactions. Classification was performed by weighted k-nearest neighbor and with support vector machine algorithms. To demonstrate how this approach might complement existing experimental procedures, we applied our algorithm to predict essential genes and genes causing morphological alterations in yeast.


Subject(s)
Animals , Algorithms , Gene Deletion , Phenotype , Genes, Fungal/genetics , Yeasts/genetics , Mutation
20.
Genet. mol. biol ; 29(3): 551-557, 2006. tab, ilus
Article in English | LILACS | ID: lil-450297

ABSTRACT

The gua1 gene encoding inosine monophosphate dehydrogenase (IMPDH), which catalyses the first step in de novo biosynthesis of guanosine monophosphate (GMP), was cloned in the yeast Schizosaccharomyces pombe by functional complementation of a gua1ura4-D18 mutant strain from a S. pombe DNA genomic library. Complementation analysis revealed a 1.2 kb fragment which segregation analysis confirmed did not code for a suppressor gene. Only 446 nucleotides of the gua1 gene encoding the IMPDH C-terminal residues were found within this 1.2 kb sequence (GenBank, AJ293460). The comparison of this wild-type fragment with the same fragment from the gua1ura4-D18 mutant revealed that there was a point mutation at position 1261 (guanine -> adenine) from the 5' end, corresponding to the amino acid residue 421 (glycine -> serine) of the enzyme. Dot and Northern analyses showed that the gua1 gene was expressed in transformants as well as in the wild-type and the gua1ura4-D18 mutant, but enzyme activity was only detected in wild-type and transformant cells. It seems likely that a 446 bp fragment from the 3' end of the gua1 gene abolished the point mutation in the mutant strain, suggesting that this fragment participates in the sequences encoding the active domain of IMPDH in S. pombe.


Subject(s)
Inosine Monophosphate , Schizosaccharomyces/genetics , Yeasts/genetics , Purine Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL